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Comprehensive dissection of cis-regulatory
elements in a 2.8Mb topologically associated
domain in six human cancers

Christina M. Caragine1,2,3,4,5, Victoria T. Le1,2,3,4,5, Meer Mustafa 1,2,3,4,
Bianca Jay Diaz1,2,3,4, John A. Morris 1,2,3,4, Simon Müller1,2,3,4,
Alejandro Mendez-Mancilla1,2,3,4, Evan Geller1,2,3,4, Noa Liscovitch-Brauer1,2,3,4 &
Neville E. Sanjana 1,2,3,4

Cis-regulatory elements (CREs), such as enhancers and promoters, are funda-
mental regulators of gene expression and, across different cell types, theMYC
locus utilizes a diverse regulatory architecture driven by multiple CREs. To
better understand differences in CRE function, we perform pooled CRISPR
inhibition (CRISPRi) screens to comprehensively probe the 2.8Mb
topologically-associated domain containing MYC in 6 human cancer cell lines
with nucleotide resolution. Wemap 32 CREs where inhibition leads to changes
in cell growth, including 8 that overlap previously identified enhancers. Tar-
geting specific CREs decreases MYC expression by as much as 60%, and cell
growth by as much as 50%. Using 3-D enhancer contact mapping, we find that
these CREs almost always contactMYC but less than 10% of totalMYC contacts
impact growth when silenced, highlighting the utility of our approach to
identify phenotypically-relevant CREs. We also detect an enrichment of
lineage-specific transcription factors (TFs) atMYC CREs and, for some of these
TFs, find a strong, tumor-specific correlation between TF andMYC expression
not found in normal tissue. Taken together, these CREs represent system-
atically identified, functional regulatory regions and demonstrate how the
same region of the human genome can give rise to complex, tissue-specific
gene regulation.

Nearly 99% of the human genome does not code for proteins1–3.
Relative to protein-coding genes, less is known about noncoding
regions and, in particular, the modulation of gene expression by
noncoding cis-regulatory elements (CREs). Historically, it has been a
challenge to characterize and identify CREs for a variety of reasons4–7,
including the large numbers of CREs distributed throughout the gen-
ome, the cell type specificity of CRE activity and their modest impact
on gene expression. Large-scale profiling efforts from large con-
sortiums such as the Encyclopedia of DNA Elements (ENCODE) and

The Cancer Genome Atlas (TCGA) have identified thousands of can-
didate CREs based on biochemical signatures such as histone mod-
ifications (e.g. H3K27ac) and chromatin accessibility (e.g. DNase
hypersensitivity or ATAC-seq)8–11. However, recent studies have found
that, although these biochemical signatures often correlate with gene-
regulatory function12–15, they do not always predict functional
impact16,17. In addition, some promoters and enhancers have been
shown to act redundantly and in combination18–22. A further compli-
cation is that some methods to study functional noncoding elements
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do not consider CREs in their native contexts (e.g. massively parallel
reporter assays [MPRAs]23,24).

Recent advances in massively-parallel genome perturbations in
situ have improved our ability to find which CREs modulate gene
expression and play a role in disease25,26. Forward genetic pooled
screens using Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) nucleases in particular have been deployed bymany
groups to identify CREs in their native context27–32. The improved
detection of CREs has even led to the first FDA-approved gene editing
therapy for sickle-cell anemia via disruption of a CRE33. Most studies of
CREs usingCRISPR, however, do so in a single cell type, and it is unclear
whether these elements are cell type specific or shared acrossmultiple
cells or tissues. The ENCODE Consortium used primary mouse and
human cells and tissues to suggest that most CREs are tissue- or cell-
specific: The approximately 700,000 distal enhancers in the human
genome identified using a combination of biochemical signatures are
found, on average, in only a single tissue or cell type8. Some CREs are
identified inmultiple cell/tissue types, suggesting the presence of core
essential CREs that might be used across tissues. This is analogous to
core essential genes identifiedusing genome-wideCRISPR screens that
are essential in multiple cell lines derived from distinct human
tissues34,35.

Despite this highly suggestive evidence that enhancers aremostly
cell-type specific, there have been few efforts to explore the functional
specificity of CREs — either with reporter assays or gene-editing in the
native, chromatinized context. Here, we seek to explicitly examine the
functional CRE landscape across cells derived from several distinct
human cancers with high-resolution. We first catalog biochemical
hallmarks of CREs near human oncogenes and use them to rank each
oncogene locus by its regulatory diversity in different cancers. At the
locus surrounding the oncogene MYC which has a diverse cis-reg-
ulatory landscape, we perform a series of saturation tiling CRISPR
screens and identify 32 CREs in 6 cell lines fromdiverse human tissues.
The majority are tissue-specific but several that are shared across dif-
ferent types of tissues. Although CREs at the MYC locus have been
studiedpreviously inhumanandmousemodels36–44, prior studies have
focused typically on one or a few CREs in a single tissue/cell, making
comparisons across tissues/cells challenging. Also, many of these
studies rely on large deletions that make it challenging to delineate
precise CRE boundaries. By deploying a uniform set of ~112,000 per-
turbations across the 6 cell lines, we identify previously unknownCREs
that regulateMYC anddefine theirboundaries at nucleotide resolution.

We validate a subset of theseCREs in depth,measuring the impact
of CRE perturbations on MYC and a non-coding RNA in the locus. We
harness RNA-targeting Cas13 perturbations45,46 to show that the non-
coding transcript CCAT1 itself is required for MYC regulation. Loss of
CCAT1 transcript reduces also reduces looping of the CCAT1 locus with
the MYC promoter, demonstrating that a noncoding RNA can itself
modulate the regulatory impact of a noncoding DNA CRE. Further-
more, restoration of CCAT1 expression in trans can partially rescue the
growth reduction of CCAT1 repression at the native CRE. We find that
identified CREs harbormotifs for lineage-specific transcription factors
and are in direct physical contact with theMYC promoter via dynamic,
cell-type-specific 3D genome loops. Taken together, this comprehen-
sive dissection of functional MYC CREs demonstrates the utility of
perturbing noncoding CREs across different cell/tissue types to elu-
cidate the complex, context-sensitive regulatory architecture of an
important human oncogene.

Results
The MYC locus has high regulatory diversity across tissues
We first sought to characterize the diversity of the cis-regulatory
landscape surrounding key oncogenes across cancer cell types. To do
this, we quantified specific biochemical hallmarks: Enhancer-
associated histone modifications H3K4me1 and H3K27ac and

chromatin accessibility (DNAse I hypersensitivity, DHS) from the
Encyclopedia of DNA Elements (ENCODE) flanking each oncogene in
the Catalog Of Somatic Mutations In Cancer (COSMIC) database47.
(Fig. 1a–d). We analyzed data from human tumor-derived cell lines
(Supplementary Data 1) representative of 10 different cancer types:
melanoma (A375), lung adenocarcinoma (A549), liver carcinoma
(HepG2), colorectal adenocarcinoma (HT29), leukemia (K562), lym-
phoma (Karpas-422), breast adenocarcinoma (MDA-MB-231), pan-
creatic carcinoma (Panc1), prostate adenocarcinoma (PC-3), and
neuroblastoma (SK-N-SH). For 386 genes classified by COSMIC as an
oncogene, we examined CREs within a ±1Mb window proximal to the
gene body (Fig. 1c), as prior studies have indicated that most CREs are
within 500 kb to 1Mb of their target genes48,49.

To assess regulatory diversity, we binned the data for each bio-
chemical hallmark (H3K4me1, H3K27ac, DHS) at several different bin
sizes and then, for each bin size, we computed the Euclidean distances
between all pairs of cell lines. Greater distances between cell line pairs
imply greater regulatory diversity. When examining each biochemical
hallmark, we found that MYC consistently scored among the 5 top
oncogenes (Supplementary Fig. 1a–d). Since the order of different
genes tended to vary based on the CRE-associated biochemical hall-
mark and binning, we sought to identify a robust way to integrate the
regulatory diversity scoring across these different analyses. When
aggregating rankings via robust rank aggregation (RRA), we found that
MYC was the oncogene with the greatest regulatory diversity (Fig. 1d).
MYC is a transcription factor that controls gene expression50,51 and
cellular proliferation52–54 and has been shown to be involved in myriad
cancers55–62. Usually tightly controlled at the transcriptional and pro-
tein level, MYC is estimated to be aberrantly expressed in 50–70% of
human cancers63,64.

This indicates that across many different cell types, MYC has a
much more variable regulatory landscape compared to other onco-
genes. For example, the MAPK serine/threonine-protein kinase ARAF
has very low regulatory diversity across different cancers (Fig. 1e).
Other top-ranked genes with high regulatory diversity were AKT2,
NFAT2, and BCL6 (Supplementary Data 2). Given the high regulatory
diversity ofMYCwith many biochemical hallmarks of cell-type-specific
enhancers, we decided to systematically interrogate CREs across cell
types at the MYC locus.

High-throughput CRISPRi screens identify cell-specific CREs
The MYC oncogene resides within a 2.8Mb topologically-associated
domain (TAD) that contains only a few other genes. Although the MYC
TAD is known as a gene desert, it does, however, have an abundance of
non-coding RNAs65–67. In order to profile the regulatory landscape
aroundMYC across cells derived fromdifferent tissues, we first designed
a CRISPR inhibition (CRISPRi) tiling library across the 2.8Mb TAD
(Fig. 2a) to identify functional regions associated with cancer-driven cell
growth. Although previous studies have used both CRISPR nuclease and
CRISPRi tomap functional elements in thenoncodinggenome,weopted
to use CRISPRi for these screens because many cancer cell lines tend to
have amplifications of oncogenes likeMYC63. If a CRISPR target site has
many copies in the genome, dropout may be due to excessive DNA
damage and apoptosis instead of a bona fide regulatory interaction with
the target gene68,69. To design the library, we first considered all possible
guide RNAs (gRNAs) with an NGG protospacer adjacent motif (PAM)
within theTAD (298,839gRNAs) and then selected a subset of thesewith
a high on-target activity score and no homopolymer repeats of length 4
ormore (Supplementary Fig. 2a, b). In total, theMYC TAD-tiling CRISPRi
library consisted of 112,162 gRNAs with a median spacing of 9 nt; we
sought comprehensive coverage of the MYC TAD without specific tar-
geting of particular enhancer-associated epigenetic signatures (Supple-
mentary Fig. 2c). We also included in the CRISPRi library design gRNAs
targeting 490 essential genes with 4 gRNAs each and gRNAs targeting
613 non-essential geneswith 4 gRNAs each (Supplementary Fig. 2d). As a
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further negative control, we also included 1000 non-targeting gRNAs
from the GeCKOv2 library70.

To identify appropriate cell lines for the tiling screen, we chose 6
cell lines (MDA-MB-231, A375, HT29, K562, PC9, A549) across different
cancer types (one each of breast, skin, colon and blood and two lung
cancer cell lines) that were previously reported to be dependent on
MYC for their growth44,57,71–74 with similar MYC copy number (Supple-
mentary Fig. 2e). In prior genome-wide CRISPR-Cas9 screens from the
Broad DepMap, MYC was found to be highly essential in all 6 cell lines
(Chronos score < -1) (Fig. 2b). We confirmed in each cell line thatMYC
transcript knockdown reduced cell growth (46%–96% reduction in
growth) (Supplementary Fig. 2f). In total, we screened more than
700,000 genetic perturbations across 6 human cell lines.

We transduced these 6 cell lines with the CRISPRi tiling library at a
low multiplicity of infection (MOI 0.2–0.5) to ensure that most cells
would receive only one gRNA. After puromycin selection was com-
plete, the cells were cultured for ~4 weeks to ensure sufficient time for
MYC-driven depletion (or proliferation) of functional MYC CREs. We
isolated genomic DNA at an early time point and at the end of the
4-week period and, via sequencing, quantified gRNA representation at
the start and end of each of the 6 screens. As expected, we saw clear
dropout of essential gene-targeting gRNAs in each of the 6 screens
(Supplementary Fig. 3a). Overall, the MYC locus tiling gRNAs and the
non-targeting negative controls had a similar distribution with far less
depletion than essential gene-targeting gRNAs.

After calculating the fold change in abundance for each gRNA, we
used a sliding window approach to identify significant CREs in each cell
line (Fig. 2c, d). We performed these analyses on a per cell line basis,
given that sensitivity to MYC depletion and growth differed across the
cell lines (Supplementary Fig. 2f). To identify an optimal window size,
wefirst examined thedepletionof gRNAsatdifferentdistances fromthe

TSS of ~500 known essential genes taken from an overlap of previously
identified gene lists35,75. We found that the optimal CRISPRi effect radius
(~90% of max) occurred for gRNAs within 180bp of the TSS (Supple-
mentary Fig. 3b). Given that the median spacing of gRNAs in the library
was 9bp, we used a sliding window of 20 neighboring (sequential)
gRNAs for CRE identification (180bp/9 bp). Next, we performed an
unpaired, two-sided t test comparing the scores of gRNA sliding win-
dows (of 20 sequential gRNAs each) with those of a set of scrambled
sequence (non-targeting negative control) gRNAs included in the
pooled screens76 (Benjamini-Hochberg FDR<0.05 across all screens).

With this procedure, we identified unique peaks in each cell line
that showed significant depletion in the MYC TAD, which we hypo-
thesized were putative enhancer-like CREs (Fig. 3a). Depending on the
cell line, we found that 0.2 – 1 % ofwindowswere significantly depleted
(Supplementary Fig. 3c). In total,we identified 32CREs across the 6 cell
lines (Fig. 3b). As expected, given the regulatory diversity of the MYC
locus (Fig. 1d), CREs were mostly unique between cell lines (Fig. 2d,
Supplementary Fig. 4a). The CREs were variable in size consisting of
between 160 and 1133 gRNAs (Supplementary Fig. 4b, c), and spanning
~400bp to 12.8 kb in length (Supplementary Fig. 4d). Only 5 CREs are
found in more than one cell line and only 2 CREs are found in more
than two cell lines—in agreement with the high level of diversity in the
regulatory landscape of the MYC TAD across cell lines (Fig. 1d).

Of the 32 CREs that we identified, eight of them overlap a pre-
viously identified MYC enhancer, such as MYC-LASE or BENC or the
super enhancer region around CCAT177–79 (Supplementary Fig. 5a–d).
Most of the established MYC enhancers were identified using large
deletions in human or mouse models44, and for one cell line (K562)
using a similar tiling CRISPR screen28. The other 24 CREs have not
previously been described or have not been described in the same
tissue/cancer. This highlights the tremendous potential for discoveries
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using uniform tiling of perturbations in different cell lines from dif-
ferent tissues—even for a relatively well-studied genetic locus likeMYC.

We aligned the CREs from each cell line to previously identified
enhancers44; many of these enhancers were found via large genomic
deletions or chromatin immunoprecipitation of enhancer-associated
hallmarks (Fig. 3b, Supplementary Data 3). For these enhancers, it is
not known whether all bases in these regions are required for CRE
activity. In most cases, we find the CREs from the CRISPRi screens are
smaller and provide better localization of key functional elements. For
example, within MYC-LASE, we identify two separate CREs, one in a
lung cancer and another in breast cancer. In MDA-MB-231 breast can-
cer cells, we find that both enhancers are present, whereas in other
cells we find either one enhancer or the other is present but not both
(e.g. in A549 and A375 cells). This highlights the ability of the CRISPR
tiling approach to further elucidate functional subregions within even
known enhancers, dissecting differential usage of distinct CREs con-
tained within a larger enhancer cluster like MYC-LASE.

For detected CREs in K562 (leukemia), we found good correlation
with a previous CRISPRi screen from Fulco et al.28. (Supplementary
Fig. 6a, b).We identified 6 prior enhancers with similar relative growth
differences and an additional repressor-like region at the promoter of
the noncoding RNA (ncRNA) PVT1 (Supplementary Fig. 6c). This dif-
ference is possibly due to the Fulco et al. screen targeting specific
regions within the MYC TAD instead of tiling the entire TAD.

CREs in theMYC locus regulate cell growth andMYC expression
We next sought to validate and measure changes in cell proliferation
upon perturbation of identified CREs. We selected the top 3 CREs

across all screens (highest CRISPRi depletion scores) and targeted
them inall cell lineswhere theywerepresent and, as a negative control,
a cell line where the CRE did not have a significant depletion (Fig. 4a).
We targeted the center of each peak by selecting 2–3 distinct gRNAs
located within 90 bp of the depletion maxima of each peak. After
selection and expansion for ~2weeks, wemeasured cell growth via ATP
quantification using a highly-sensitive luminescence assay. Compared
to non-targeting (negative control) gRNAs, we found that targeting
each CRE in the cell line(s) where identified in the primary screen
resulted in a marked decrease in cell growth (p <0.05, unpaired t test)
(Fig. 4b). However, targeting the same region in cells where the TAD
tiling screen did not identify any significant CREs resulted in no sig-
nificant change in growth. For example, targeting a K562-specific
(leukemia) CRE in MDA-MB-231 (breast) cells does not result in any
difference in growth compared to non-targeting gRNAs. Also, for the
shared CRE found in both HT29 (colon) and PC9 (lung) cells, we see
significant decreases (relative to non-targeting) in cell growth in both
of those cell lines but not in A375 (melanoma) cells, where this region
was not significantly depleted in the MYC TAD tiling screen.

Given that CRE inhibition is expected to have more modest
effects than complete gene loss, we measured MYC expression in
cells transduced with the same viral constructs as in the cell growth
assay. We found significant decreases inMYC expression upon CRE-
targeting (compared to non-targeting gRNAs) only in those cell
lines where the CRE was present in the TAD tiling screen (Fig. 4c).
We find strong concordance between decreased MYC expression
and decreased growth, suggesting that CREs identified in the TAD
tiling screen work through modulation of MYC expression.
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In cell lineswith individually validatedCREs thatmodulate growth
and decrease MYC expression (K562, A375 and HT29/PC9), we next
sought to understand the role of common biochemical hallmarks of
enhancer activity: in particular, histone modifications and chromatin
accessibility. Using windows surrounding each CRISPRi CRE in these
cell lines, we examined the same genomic regions in other cell lines
that did not possess those CREs (Fig. 4d). We found that these

biochemical hallmarks were present more often in those cells with a
CRISPRi CRE at the same genomic region. To quantitatively test which
biochemical hallmarks of enhancer activity predict functional CREs
from the CRISPRi screens and to what degree, we used the Genomic
Association Tester (GAT)80, which assesses overlap via sampling of
genomic intervals followed by empirical p-value determination.
Through this, we found that these CREs significantly overlap with
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H3K27ac, H3K4me1 and chromatin accessibility (Fig. 4e, Supplemen-
tary Fig. 7a). In general, we find that, despite H3K4me1 being more
widespread overall in the MYC TAD, there is greater and/or more
consistent overlap with H3K27ac and DHS (Supplementary Fig. 7b, c).
For example, forCREs locatedwithin the introns of thenoncodingRNA
PVT1, we find strong overlap between H3K27ac, chromatin accessi-
bility and CRISPRi CREs (Supplementary Fig. 7d).

CREs show significant interaction with the MYC promoter and
are transcribed
Transcriptional regulation of target genes by CREs is thought to be
mediated by physical contact or looping between the CRE and the
proximal promoter region. Todeterminewhether the CREs identified in

the CRISPRi screens were in contact with the MYC promoter, we per-
formedH3K27acHiChIP81 on the six screened cell lines (Fig. 5a, b). Since
H3K27ac was present at all CRISPRi CREs, we focused on 3D contacts
with H3K27ac-decorated enhancer regions (Supplementary Fig. 7c). We
identified millions of unique enhancer contacts in each cell line and
found a high correlation between biological replicates of the same cell
line but lower correlations between different cell lines (Supplementary
Fig. 8a–c). As expected, the two lung-derived cell lines (PC9 and A549)
had a much higher correlation (r=0.75) compared to all other pairs of
cell lines (0.51 ≤ r≤0.66). We also found that the HiChIP had a positive
correlation for knownenhancermarks likeH3K27ac andH3K4me1 anda
negative correlation with repressive marks like H3K27me3 and
H3K9me3 (Fig. 5c, Supplementary Fig. 8d, e).

Fig. 4 | CREs at theMYC locus tend to be cell-type specific and harbor H3K27ac
and open chromatin biochemical signatures. a Locations of indicated CREs
within theMYCTAD.bCell proliferation (CellTiter Glo) forCRISPRi perturbations of
CREs identified in the TAD-wide screen (n = 3 biological replicates of 2–3 gRNAs per
CRE or non-targeting control). Error bars represent mean ± s.e.m. The p values are
determined by unpaired, one-sided t tests. *p <0.05, **p <0.01. Peak p values:
HT29/PC9 (HT29: 0.01, PC9: 0.028, A375: 0.84), A375 (A375: 0.004, PC9: 0.49),
K562 (K562: 0.001, MDA-MB-231: 0.41). c MYC expression after CRISPRi perturba-
tions of CREs identified in the TAD-wide screen (n = 3 biological replicates of 2–3
gRNAs per CRE or non-targeting control). Boxplot whiskers extend fromminimum
to maximum, the box extends from 25th to 75th percentile and the mid-line

represents themedian. The p values are determined by unpaired, one-sided t tests.
*p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. Peak p values: HT29/PC9 (HT29:
0.000004, PC9: 0.004, A375: 0.08), A375 (A375: 0.002, PC9: 0.49), K562 (K562:
0.009, MDA-MB-231: 0.25). d Heatmap of H3K27ac and chromatin accessibility
from specific cell lines (x-axis) for CREs found in the indicated cell lines (y-axis).
Regions range from 115 to 215 kb. H3K27ac and chromatin accessibility biochemical
signatures are rarely found in cell lineswhere the CRE is not functional. eOverlapof
CREs with enhancer and promoter-associated biochemical signatures (n = 5 asso-
ciation tests with 2000 samples per test). Error bars represent mean± SD of asso-
ciation tests. Source data are provided as a Source Data file.
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Using the HiChIP contact mapping, we examined whether the
CRISPRi CREs contacted theMYC promoter. We found that all CRISPRi
CREs, except for one, were in contact with theMYC promoter (Fig. 5b).
Surprisingly, we found that the opposite was not true: That is, of all
contacts with theMYC promoter, less than 10% of themwere identified
as CREs in the CRISPRi screens. Notably, CRISPRi CREs have a ~2-fold
greater contact strength/frequency than other HiChIP contacts with
the MYC promoter (Supplementary Fig. 8f, g). We find that the CREs
identified by the screens aremore likely to contact the MYC promoter
than any other enhancer associated biochemical features (Supple-
mentary Fig. 8h). In line with these observations, we found that HiChIP
—which combines H3K27ac enhancer activity with physical contact—
better predicts functional CREs than histone marks or chromatin
accessibility alone (Fig. 5d, Supplementary Fig. 9). This agrees with
prior work proposing that enhancer activity and 3D contact (“activity-
by-contact”) are required for functional CREs82.

Over the past two decades, several studies have established per-
vasive transcription of enhancer RNAs (eRNAs) from active promoters,
enhancers and cis-regulatory elements83–85. We sought to understand
whether CRISPRi CREs were also transcribed. Using an eRNA dataset
that captures the 5’ ends of elongating transcripts without the need for
pausing RNA polymerase or labeled nucleotides (NET-CAGE)86, we
observe that most, though not all, CREs generate eRNAs and that they
tend to be strand-specific with one strand typically expressed much
more highly than the other (Supplementary Fig. 10a, b), in line with
prior observations of eRNAs87,88. Ranking eRNAs across the MYC TAD
by expression level, we find that CRE-containing regions tend to rank
highly, although lower than promoters of genes like MYC, PVT1 and
CCDC26 (Supplementary Fig. 10c, d). However, there is not a linear
relationship between CRE functional activity and transcription of
corresponding eRNAs: For example, in K562, there are several CREs
identified within the PVT1 gene body but the strongest CRISPRi CRE
(CRE 2) drives significantly less eRNA transcription than another CRE
(CRE 3) with about half the functional activity in the screen (Supple-
mentary Fig. 10a, b). This analysis reveals that a subset of CREs
detected in the CRISPRi screens have strong eRNA transcription;
however, eRNA transcription is not directly linked to functional impact
on cell growth.

The noncoding RNA CCAT1 is required for the activity of its CRE
Across all screened cell lines, we find that many CREs identified in the
CRISPRi screens overlap promoters of ncRNAs (Supplementary
Fig. 11a). One key mechanistic question is whether other CREs in this
region regulate MYC via their DNA elements (enhancer activity), or
through their RNA transcripts, or a combination of mechanisms. For
example, the ncRNA CCAT1 overlaps significant CREs in HT29, PC9 and
A549 pooled screens and is most highly expressed in those cell lines
(Supplementary Fig. 11b). It is located within a previously identified
super enhancer and associated with positive regulation of MYC89.
There is biochemical evidence that suggests both DNA and RNA reg-
ulatory activity: In HT29, which has the highest CCAT1 expression of
the screened cell lines, we found a significant physical interaction
between the CCAT1 promoter CRE and MYC itself (H3K27ac HiChIP),
which was also observed in a previous study using promoter-capture
Hi-C90 (Supplementary Fig. 11c).

Recently, Xue and colleagues developedRNA in situ conformation
sequencing (RIC-seq) to identify interactions betweenRNA transcripts,
including noncoding RNAs91. Analysis of RIC-seq data from HeLa cells
(which also express CCAT1) shows strong RNA interactions between
the CCAT1 transcript and theMYC transcript, suggesting that the RNA
itself might be important for enhancer activity (Supplementary
Fig. 11c). To dissect the role of the noncoding RNA transcript from the
activity of the DNA elements of the CRE, we used three distinct
approaches: targeting the CRE using DNA-targeting (Cas9) and RNA-
targeting (Cas13) CRISPRs, performing physical genome conformation

mapping (H3K27ac HiChIP) after CCAT1 RNA knockdown and exam-
ining changes in CRE looping, and measuring whether the impact of
CCAT1 silencing couldbe rescued by overexpression ofCCAT1 in trans.

Cas13 is a recently characterized RNA-targeting CRISPR nuclease
that cleaves single-stranded RNA transcripts in a strand-specific man-
ner and, as recently shown, it is effective in knockdown of both coding
and noncoding transcripts46,92. We designed optimized Cas13 guide
RNAs that target the CCAT1 transcript and compared the reduction in
CCAT1 expression to CRISPRi at the CCAT1 CRE45,93 (Supplementary
Fig. 12a). We found that both CRISPRi and Cas13 reduced CCAT1 tran-
script levels ~60–70% (Supplementary Fig. 12b) and that CCAT1
knockdownwith Cas13 decreased cell growth (Supplementary Fig. 12c)
similarly to CRISPRi at the CCAT1 CRE (Fig. 4b).

To investigate the functional role of CCAT1 RNA and possible
changes in3Dgenomeconformation,we targeted theCCAT1 transcript
with Cas13 and performed H3K27ac HiChIP. We found that the CCAT1
RNA impacts DNA looping between the CCAT1 and MYC promoters
(Supplementary Fig. 12d). TheDNA looping betweenCCAT1 andMYC is
reduced by 60% upon CCAT1 RNA knockdown (Supplementary
Fig. 12e). In fact, across the entire genome, theCCAT1-MYCHiChIP loop
has the largest decrease in strength and the HiChIP loopswith the next
largest losses of interaction after CCAT1 RNA knockdown (FAM91A1-
ANXA13 and TRAPPC9-CHRAC1) are both on chromosome 8— the same
chromosome as the MYC TAD (Supplementary Fig. 12f, g). Further,
ANXA13, TRAPPC9, and CHRAC1 are associated with tumorigenesis,
metastasis, and/or poor outcomes in colon cancer94–98, suggesting that
the CCAT1 lncRNA might promote changes in genome structure for
other nearby colon cancer-associated loci.

In light of these results that CCAT1 RNA plays a role at the DNA
level (i.e. looping), we wondered whether an exogenous CCAT1 RNA
could rescue the decreased growth phenotype observed after endo-
genous CCAT1 silencing. To do this, we first generated an expression
vector expressing a CCAT1 lncRNA under a strong constitutive pro-
moter. After CCAT1 silencing via CRISPRi, HT29 cell growth was
decreased to 65%compared to the population thatwasnot transduced
(Supplementary Fig. 12h). We found the cells with CCAT1 silenced and
expressing a (non-targetable) CCAT1 transgene were rescued but not
completely (84% of control cell growth). This suggests that upon
CCAT1 knockdown, CCAT1 RNA delivered in trans can restore at least
partial function.

A recent study found that many transcription factors (TFs) also
harbor RNA-binding domains and this suggests a possible mechanism
by which ncRNAs regulate target genes such as MYC99. These results
suggest that the CCAT1 RNA plays an essential role in driving the
activity of the CRE. More broadly, the overlap between many CRISPRi-
identified CREs at the MYC locus and ncRNA promoters suggests that
this might be a more general principle of gene regulation.

CREs across cell lines harbor binding sites for unique TFs
TheCRISPRi screens yielded 32 distinctCREs across the 6 cell lines that
potentially act to transcriptionally regulate MYC through interactions
with transcription factors (TFs). Multiple experimental100–102 and
computational103 studies have attempted to characterize master TFs
that drive growth and constitute a cell’s identity.We hypothesized that
the unique functional CREs in cells derived from different tissue types
might be bound by characteristic TFs of those tissues or cancers
(Fig. 6a). To test this, we performed an association test between the 32
CREs and each of the 746 human TF motifs in the JASPAR database.
Briefly, we compared the overlap of these motifs to a null distribution
generated using scrambled motifs (Supplementary Data 4). After cor-
rection for multiple comparisons, we found that ~70% of enriched TF
motifs were unique to each cell line and not shared (Fig. 6b, c, Sup-
plementary Fig. 13a). This result agreeswith our priorfinding thatmost
CREs are cell-specific (Fig. 2d). The enrichment of tissue-specific TFs in
CRISPRi CREs was also apparent when examining the top gene

Article https://doi.org/10.1038/s41467-025-56568-5

Nature Communications |         (2025) 16:1611 8

www.nature.com/naturecommunications


ontology (GO) terms associated with these TFs (Supplementary
Fig. 13b), such as morphogenesis of lung (in A549) and of mammary
gland (inMDA-MB-231). For a subset of these enriched TFswhereChIP-
seq data was available, we found excellent correspondence between
motif-based analysis and experimentallymeasured TF binding (Fig. 6d,
Supplementary Data 4).

Given the enrichment for specific TFs in CREs, we reasoned that if
these TFs regulate MYC, then we would also predict that tumors with
greater expression of these TFs should also have higher levels ofMYC.
To test this, we quantified expression of TFs in primary tumors of the

same tissue of origin as the cell line containing CREs where the TF
motif was enriched, along with MYC (n = 2948 blood, breast, colon,
lung and skin primary tumors fromTheCancer GenomeAtlas [TCGA]).
We identified several CRE-enriched TFs with a positive correlation
between TF expression and MYC expression (0.2 < ρ <0.4) (Fig. 6e,
Supplementary Fig. 14a–f, Supplementary Data 4, 5).

This suggests that these TFs may act through the binding sites
identified via ChIP or motif matching in these CREs to regulate MYC,
although it is possible that these TFs drive MYC expression in both
cancerous and normal tissue. To identify those TFs that regulate MYC
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specifically inmalignancy, we assembled ~2000normal (non-cancerous)
primary tissue transcriptomes from the Genotype-Tissue Expression
(GTEx) project and TCGA and analyzed correlations between TF and
MYC expression. We found 97 TF-tissue pairs where the TF correlation
with MYC was higher in tumor samples than in normal tissue samples
(n = 1932 blood, breast, colon, lung and skin tissues) (Supplementary
Fig. 15a, Supplementary Data 4) and also identified 37 TF-tissue pairs
where the TF correlation withMYCwas fivefold higher in tumor samples
than in normal samples (Supplementary Fig. 15b). These TFs represent
distinct transcription factor families identified in each cell line, and
potentially can be viable targets for mitigation of cancer growth, given
the difficulty of developing drugs that target MYC directly64.

Discussion
Recent advances in genome editing technology, namely CRISPR sys-
tems, have enabled researchers to manipulate genomic elements in
order to understand which ones impact key phenotypes and how
precisely theywork. Todate, however, most studies of CREs have been
limited to a single cell type, and it is unclear whether these elements
are unique to the cell type studied or are shared among many distinct
cell types. To answer this question, we have used pooled CRISPR
inhibition (CRISPRi) screens to identify and characterize the CREs of
the oncogene MYC across six cancer cell lines in a systematic, high-
resolution manner. These CREs modulate cell growth and do so via
changes in MYC. This is likely via enhancer activity: Nearly all are in
physical contact with the MYC promoter, despite being located up to
1.8Mb away, and contain binding sites for characteristic, lineage-
associated transcription factors for each respective tissue/cancer.

Over the past decade, many studies have identified enhancers that
regulate MYC, such as the E1-E5 cluster, N-ME and BENC in
leukemias36,37,42, LASE and ECSE in epithelial cancers39, and others38,40,43.
Several of them have relied on indirect evidence of enhancer
activity42,43, such as ChIP-seq of H3K27ac,MED1 or BRD4, and those that
have used perturbations to show a causal relationship with gene
expression have done it with only one or a handful of perturbations36–41.
For these studies, it can be challenging to compare between those that
use different kinds of perturbations (e.g. mutagenesis, large deletions,
and tumor somatic mutations). A hallmark of our study is the uniform
set of ~112,000 perturbations across 6 cell lines.

We also use exclusively human models: The majority of prior
studies that use genetic perturbations do so inmouse36–38,40, which has
poor noncoding sequence conservation with human (<50%)104. These
mouse models typically have low resolution, since they employ large
deletions induced via Cre recombination. Orthologous noncoding
regions of the genome do not always have conserved function when
tested with perturbation assays: For example, we previously showed
that CRISPR perturbations of the mouse ortholog of the well-studied
DHS + 58 enhancer of BCL11A—a therapeutic target for hemoglobin
disorders—do not modulate fetal hemoglobin in the same manner as
the human enhancer29. Thus, for the study of human cancer and gene
regulation, the use of human models is preferable where possible.

Our study uses a single method (tiling CRISPR silencing) to inves-
tigate CREs systematically and thoroughly in theMYC TAD acrossmany
different cell lines, yielding a more comprehensive enhancer discovery
at the MYC locus. This unified approach can help develop unique
insights: For example,wediscover that a previously knowncoloncancer
enhancer is not only present in the colon cancer cell line, but also in a
lung cancer cell line. The scale of these noncoding screens at the MYC
locus is vast:Weperturb everybasepair in theMYCTADacross 6human
cell lines to systematically discover known and new enhancers.

We find that CRISPRi CREs are strongly associated with certain
biochemical features, such as enhancer-associated histone marks and
chromatin accessibility. However, neither thesemarks nor 3Dproximity
with a gene target (as measured by H3K27ac HiChIP), are sufficient to
conclude that aCRE is functional. In a subset ofCRISPRi-identifiedCREs,

weperformed an in-depth validation showing that they alter cell growth
and MYC expression. In cell lines without these CRISPRi CREs, genetic
perturbations have no effect on either cell growth or gene expression.
One important limitation of this work is that each CRE was examined
individually and, thus, it is difficult to disentangle whether these CREs
may act redundantly or synergistically. Future work with simultaneous
perturbation of multiple CREs or a combination of activation and inhi-
bition at different CREs could help address this question.

Similarly, we cannot be certain whether MYC is the only target of
CREs identified in the functional screens. A limitation of the CRISPRi
screens is that it can only indicate that a region has an effect on cell
growth when perturbed, and it is not possible to see which genes are
specifically affected. An important future direction would be to
directly measure gene expression when perturbing each region (e.g.
ECCITE-seq, Perturb-seq, STING-seq) in order to better understand
which genes are being targeted. Although genome-scale Perturb-seq
data exists for protein-coding genes105, a similar atlas for CREs would
be an enabling resource for enhancer genomics.

The MYC TAD is a unique region: It contains several noncoding
RNAs but only two protein coding genes (MYC and POU5F1B). The
majority of CREs identified in the CRISPRi screens overlap promoters
of ncRNAs, which pose a unique challenge in understanding whether
DNA-based CREs or ncRNA transcripts are key drivers of MYC. One
ncRNA promoter that we found overlapping CRISPRi CREs in three cell
lines is CCAT1, a highly expressed lncRNA located within a super
enhancer and associated with positive regulation of MYC89. Using a
combination of DNA- and RNA-targeting CRISPRs, native genome
structuralmapping, and rescueof ncRNAexpression in trans,we found
that the CCAT1 locus regulates MYC not only via the enhancer’s DNA
elements but also via the CCAT1 transcript itself. It remains an open
question whether this ncRNA activity is specific to CCAT1 or a more
general principle of ncRNAs at CREs. Future noncoding RNA-directed
perturbations—using CRISPR systems like Cas13 or RNA interference
methods45,46,106,107—will be needed to pursue these mechanisms
underlying gene regulation.

The dysregulation of MYC is a hallmark of many different cancer
types55,108 and MYC has been considered “undruggable” due to lack of
targetable active binding sites for ligands64. Targeting individual CREs,
as we have shown, has the potential to attenuate gene expression by as
much as 50%, which might be sufficient for selective eradication of
cancer cells, and, in fact, preferable, considering thatMYC is necessary
for normal cell growth aswell109. In the future, single and combinatorial
CRE targeting might yield effective strategies to selectively target this
important oncogene in a cell-type specific manner.

Methods
Oncogene regulatory diversity analysis
Histone ChIP-seq and DNase-seq were downloaded as BAM files from
the Encyclopedia of DNA Elements (ENCODE8) (see Supplementary
Data 1). For each cancer cell line, we downloaded H3K27ac, DNase-seq
and H3K4me1 datasets. We generated Bigwig coverage files for each
dataset using deeptools 3.4.2110, with normalization for sequencing
depth using theRPGCmethod.Wenormalized resulting bigwigs by the
maximum read value and fed into genomation111 for scoring. The
oncogenes profiled were selected from the Catalog Of Somatic
Mutations In Cancer (COSMIC) database47 (accessed Nov. 7, 2017) as
those having the labels of “oncogene” or “oncogene, fusion”. In total,
this yielded 386 oncogenes. We defined windows of 2Mb surrounding
each oncogene’s transcription start site (TSS), with 1Mb on each side.
This range was chosen because prior studies have indicated that most
enhancers are located within 0.5–1Mb from target gene TSSs48,49.

Using the windows and bigwig files, we ran genomation’s Scor-
eMatrixList to obtain the feature signal (a vector of values r for each
100 kb bin over the 2Mb region surrounding the oncogene’s TSS). To
understand the diversity of the DNA landscape surrounding
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oncogenes, we computed the summed, pairwise Euclidean distances
between each oncogene’s feature signal r across all cell lines:

ORD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pcell types
i, j ðri � rjÞ2

q

, where i and j are unique pairwise cancer

cell line comparisons. For example, using H3K27ac ChIP-seq data for
the 2Mb surroundingMYC in HCT116, A375 and PC3 cell lines, the sum
of all the distances between each of these vectors in a pairwisemanner
results in the ORD score for MYC H3K27ac. We call this the oncogene
regulatory diversity (ORD) score. This is done for each of the 386
oncogenes for 3 enhancer biochemical signatures (H3K27ac, DHS and
H3K4me1), across 12 cancer cell types (Supplementary Fig. 1).

For each feature, we rank the oncogenes based on ORD score,
with the highest score resulting in the top rank. The overall rank for all
oncogenes was determined by aggregating the ranks from each fea-
ture using Robust Rank Aggregation112. Windows containing regions
that overlap with other oncogene TSSs were kept, due to previous
findings that promoters can also act as enhancers for other genes (e.g.
shadow enhancers)28,113,114. Ranks for all bin sizes can be found in Sup-
plementary Data 2.

Cell culture conditions
We acquired cell lines fromATCC (except HEK293FT, which were from
ThermoFisher) and maintained with the media listed (Supplementary
Data 6), along with puromycin concentrations for selection. All cell
lines were cultured at 37 °C, 5% CO2, and ambient oxygen levels.

MYC knockdown using Cas13
Monoclonal doxycycline-inducible RfxCas13d MDA-MB-231, K562,
A549, and HT29 cells were generated by transducing cells with a len-
tivirus produced using pLentiRNACRISPR_00745 (Addgene 138149) at a
low multiplicity of infection (MOI < 0.1) and selected with 5μg/ml of
blasticidin S (A.G. Scientific B-1247). Single-cell colonies were isolated
by low-density plating and then expression of HA-tagged Cas13 was
confirmed by immunoblot using an anti-HA peptide antibody (Cell
Signaling Technology 2367S). RfxCas13d-NLS A375 monoclonal cells
were obtained from Wessels and Méndez-Mancilla et al.45.

We cloned a nontargeting guide RNA and a guide RNA targeting
the MYC transcript (Supplementary Data 7) into an RfxCas13d guide-
only vector that also expresses GFP and puromycin resistance,
pLentiRNAGuide_004115 (Addgene 223175). To produce lentivirus, we
seeded 900,000 HEK293FT cells per well (6-well dish) and transfected
them with 5.5 µl polyethylenimine linear MW 25000 (Polysciences),
1 µg gRNA transfer plasmid (guide RNA in pLentiRNAGuide_004),
0.8 µg psPAX2 (Addgene 12260) and 0.5 µg pMD2.G (Addgene 12259).
Three days post-transfection, the viral supernatant was collected, fil-
tered through a 0.45-µm filter, and monoclonal Cas13 cell lines were
transduced at a low MOI (~0.5). After 24 h, we replated cells in 24-well
plateswithmedia containing 1μg/mLdoxycycline to induceRfxCas13d
expression (Supplementary Data 6). Plates were imaged using an
Incucyte SX3 at 10× magnification and acquiring 9 images per well
every 4 h for 72 h.

Cis-regulatory element library design and cloning
We selected all Cas9-targetable sites contain the protospacer-adjacent
motif (PAM) NGG on both strands within the topologically associated
domain containingMYC (genome: hg19, coordinates: chr8:127,734,994-
130,746,056). We eliminated gRNAs with the Doench on-target score
<50 (as previously described116), as well as those with homopolymer
repeats (>4), yielding 112,162 gRNAs a median of 9 bp apart (Supple-
mentary Fig. 3).

As a positive control, we included ~2000 essential gene targeting
gRNAs (targeting 490 essential genes) from the TKOv3 genome-wide
library75. Essential genes were identified as genes that overlapped
between two studies of core essential genes acrossmultiple cell types35,75.
As negative controls, we included approximately 2000 nontargeting

gRNAs and 2000 nonessential regulatory element targeting gRNAs28.
The gRNAs were synthesized as a pool (Twist Biosciences). We amplified
and cloned the Twist pool as previously described117 using Gibson
assembly into an all-in-one KRAB-dCas9 vector with the F + E modified
sgRNA scaffold (pCC_09, Addgene 139094)118 and concentrated the
ligationproductsusing isopropanolprecipitation.Weelectroporated the
concentrated ligation productwith Endura cells (LGCBiosearch 60242-2)
in multiple transformations and then pooled together and plated on
square 245 × 245mmBioAssay plates (Corning 431111) with LB / agar 100
ug/mlCarbenicillin.Usingdilutionplating,wemeasureda representation
of 500 colonies per gRNA. The bacteria were harvested after 14 h of
incubation at 37 °C, scrapedwith 5-10ml of LBmedia andprocessedwith
a PlasmidPlusmaxi prep kit (Qiagen 12965).Weused 1maxi prep column
per 0.25 g of bacteria.

We then sequence verified the library. To prepare the library for
sequencing, we performed a 2-step PCR reaction (nested PCR) with
primers listed in Supplementary Data 7, using 10 ng of the library with
NEBNext High Fidelity PCR Master Mix (NEB M0541L). The PCR reac-
tion first amplified the region on the plasmid containing the guide, and
second, added on Illumina adaptors and unique barcodes. The pro-
tocol was as follows: 98 °C for 30 s, then 10x: [98 °C for 10 s, 66 °C for
30 s, 72 °C for 15 s], 72 °C for 2min, incubate at 4 °C. Full library
sequences and details can be found in Supplementary Data 8.

Pooled lentiviral production and screening
HEK293FT cells were plated in Dulbecco’s Modified Eagle Medium
(DMEM) + 10% FBS (D10) in a T225 flask so that the following day, cells
are 90% confluent. Half of the media was removed from the flask, and
cells in each flask were transfected with 25 ug of transfer vector (e.g.
CRE-targeting library), 13.6μg pMD2.G (envelope plasmid), and 20 ug
psPAX2 (packaging plasmid) using 2.5mL Opti-MEM and 136 ul poly-
ethylenimine linear 25 K (Polysciences 23966). The day after, fresh D10
media is added to full volume. Then, 48 h later, we collected the viral
supernatant and put it immediately on ice. We concentrated the
supernatant by centrifugation at 100,000× g (Thermo Sorvall LYNX)
for 2 h at 4 °C. The resulting pellet was resuspended in cold DMEM and
stored at −80 °C until use.

We determined the appropriate titer of virus before each experi-
mental transduction. We transduced 3M cells with a standard spin-
fection protocol with different dilutions of virus in a 12-well plate as
well as a no virus control well. After adding virus, we spun the cells at
2000 rpm for 2 h at 37 °C (Beckman Coulter Allegra X-14R) and incu-
bated overnight. The next day, we plated half of the cells in each well
into two new wells of a 6-well plate. In one set of wells, we added the
appropriate puromycin concentration for the cell line (Supplementary
Data 6). After all the cells in the no virus well had died, cells in the
corresponding wells (with puromycin) were counted to determine the
viral volume that results in 20%–40% cell survival, corresponding to a
multiplicity of infection (MOI) of 0.2–0.5.

We cultured each cell line in the appropriate media (Supplemen-
tary Data 6) and transduced ~2 × 108 of themwith the CRISPR lentiviral
library via spinfection with the viral volume determined from the
previous spinfection. As before, after adding virus, we spun cells at
2000 rpm for 2 h at 37 °C and incubated themovernight. After 24h, we
passaged cells in 5-layer flasks (NEST Scientific 731002) and selected
with the appropriate puromycin concentration (Supplementary
Data 6) for 4 weeks (28 days) and split at ~80% confluence. Also, at the
first passage post-selection, we spun down cells and froze for genomic
DNA extraction. The overall representation was ~500 cells per con-
struct with ~83% of surviving cells receiving a single gRNA construct
(single infection percentage calculated via Poisson estimation119).

CRISPRi pooled screens library preparation and data analysis
We isolated genomic DNA from cells using a modified salting-out
precipitation117. The gRNA readout was performed using two rounds of
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PCR. For PCR1, we used 10 ug of gDNA in each 100 ul reaction. We
pooled the PCR1 products and used the mixture for a second PCR
reaction. This second PCR adds on Illumina sequencing adaptors and
barcodes. We ran 1 PCR2 reaction for every 10,000 gRNA in the library
for a total of 12 PCR2 reactions per biological conditions.Weperformed
PCR1 reactions using TaqB polymerase (Enzymatics P7250L) and PCR2
reactions withQ5 (NEBM0491).We pooled and purified PCR2 reactions
with a QIAquick PCR purification kit. We ran the resulting product
through a 2% E-gel, fromwhich we extracted a band of 250–270bp and
purified it with a QiaQuick Gel Extraction kit (Qiagen 28704). We
quantified the concentration of the gel-extracted PCR products using
Qubit dsDNA HS Assay Kit (Thermo Fisher Q32851), then diluted and
sequenced it on an IlluminaMiSequsing a v3 kit (IlluminaMS-102-3001).
This was followed by sequencing on an Illumina NextSeq using a
NextSeq 500 High Output v2 kit (150 cycles, 20024907).

We demultiplexed the samples using bcl2fastq (Illumina), trim-
med off adapters and aligned to hg19with bowtie2 with options -v 1 -m
1. We normalized the resulting reads by the sample read depth (each
read divided by the total number of reads). Then, for each screen, we
calculated a depletion CRISPRi score for each gRNA: log2 fold change
between the early andfinal timepoints.We then smoothed the signalof
each screen by taking the median value of a sliding window (20
gRNAs). To identify significant windows, an unpaired, two-sided T test
was performed by comparing the scores of gRNA slidingwindowswith
those of the nontargeting negative control gRNAs. Significant gRNAs
are those that score below an adjusted FDR threshold of 0.05 (Benja-
mini-Hochberg) across all screens (Supplementary Fig. 5). All fold
change values for all screens can be found in Supplementary Data 9.
We assessed the empirical false discovery rate (FDR) of screen win-
dows by comparing T statistics generated from the screen vs. non-
targeting guide RNAs to those from negative control regions vs.
nontargeting guide RNAs. These negative control regions span three
negative control regions that are located far from known essential
genes28.This established a threshold based on an FDR of 0.05. We
identified significant CRISPRi screen peaks (CREs) by merging sig-
nificant gRNAs that were within 500 nt of each other. A valid peak,
therefore, was defined as one with gRNAs no more than 500 nt apart
from each other, and at least 10 gRNAs within it.

Individual CRE peak targeting, proliferation and digital and
quantitative PCR
We identified the top 3 peaks across all screens that showed the
highest CRISPRi depletion scores. From thesepeaks (located in the cell
lines A375, HT29/PC9, andK562), we chose 3 guideRNAs located at the
maxima of each peak. For HT29/PC9 and K562 peaks, we cloned guide
sequences into pCC_09 and lentivirally transduced the constructs into
cell cultures in 2 infection replicates. After 24 h, we replaced themedia
with puromycin media (Supplementary Data 6). We titered viral
volumes such that 20–40% of cells survived after puromycin selection.
After selection and expansion for ~2 weeks in puromycin, we plated
cells for DNA/RNA extraction for digital PCR (dPCR) and Cell Titer Glo.
For the A375 peak, we cloned guide sequences into pCC_09 and len-
tivirally transduced the constructs into cell cultures in 3 infection
replicates. After 24 h, we replaced the media with puromycin media
(Supplementary Data 6). We titered viral volumes such that 20-40% of
cells survived after puromycin selection. After selection, cells were
cultured for 3 days and collected for qPCR. After selection and
expansion for ~2 weeks in puromycin, we plated cells for Cell Titer Glo.

For qPCR and dPCR, we extracted RNAwith Trizol (ThermoFisher
15596026), then columnpurified itwith aDirect-zol RNAMicroprep kit
(Zymo R2050). We quantified RNA concentration by spectro-
photometry (NanoDrop). To measure gene expression, we performed
dPCR (Qiagen QIAcuity 4) with Cy5/Iowa Black RQ target gene probes
(IDT), FAM/ZEN/Iowa Black FQ for the B2M normalizer (IDT), and Luna
Universal One-Step RT qPCRMaster Mix kit (NEB E3005L) and Tween-

20 (Sigma-Aldrich P1379). All dPCR primer and probe sequences are in
Supplementary Data 7. For each sample, we first normalized the target
gene expression by B2M expression per sample. Then, to compare
expression across samples, we normalized each sample by the average
value of the non-targeting (negative control) gRNAs. For qPCR, we
used Taqman Universal PCR Master Mix (Thermo 4304437), HPRT1
endogenous control (VIC/MGB probe) (Thermo 4326321E) and for
gene probes we used Taqman Gene Expression assay (Thermo
4453320 and 4331182).

For Cell Titer Glo, we plated ~2000 cells in 100 μl of media in, flat,
black-walled 96-well plates (Corning 3904). We waited for the fastest
growing cells to reach ~80% confluency, then lysed all cells using a 1:4
dilution of Cell Titer Glo and PBS. We placed the plates on an orbital
shaker for 2min, and, after 5 more minutes, we quantified the lumi-
nescence signal with a Tecan Infinite 200 Pro Plate Reader.

Association of CRISPRi screen with enhancer-associated
features
We downloaded all tracks from sources indicated in Supplementary
Data 1. We aligned the tracks to hg19 with bowtie2 2.2.8120. The
resulting bam files were sorted and removed of duplicates. We then
generated bigwig coverage files using deeptools 3.4.2, with normal-
ization for sequencing depth using the RPGC method. We then used
them as input for genomation for scoring and heatmap generation.
Heatmap windows were defined as significant enhancer peaks found
across each cell line. These peaks were the same as those defined in
CRISPRi pooled screens library preparation and data analysis.

We used genomic association tool (GAT) 1.3.4 to associate sig-
nificant gRNAs in each cell line (as defined in CRISPRi pooled screens
library preparation and data analysis) with called peaks for corre-
sponding histone mark and accessibility tracks. We downloaded sig-
nificant peaks for histone and accessibility tracks from sources
indicated (Supplementary Data 1). The workspace for GATwas defined
as the entirety of theMYCTAD /CRISPRi screen region. GATwas run 5x
with 2000 iterations per run, for a total of 10,000 iterations per
association test.

H3K27ac HiChIP sample preparation and analysis
For H3K27ac HiChIP libraries81, we grew NIH3T3 (mouse) cells and
human cell lines A375, A549, HT29, K562, MDA-MB-231 and PC-9 in the
appropriate media (Supplementary Data 6). We fixed cells in 1% for-
maldehyde for 10min and quenched to a final concentration of 125 nM
glycine. We mixed 2 million fixed mouse cells with 10 million of each
fixed human cancer cell line. The cells were lysed in 0.5% SDS, quen-
ched with 10% Triton X-100, and digested with MboI (NEB R0147M).
The DNA overhangs were blunted, biotinylated (ThermoFisher
19524016), and ligated. Nuclei were spun down, resuspended in
nuclear lysis buffer and sonicated using a Covaris LE220 with the fol-
lowing conditions: Fill level 10, PIP 450, Duty factor 30, CPB 200. We
incubated the sheared DNA with Dynabeads Protein A (ThermoFisher
10001D) for 2 h at 4 °C. We then placed the tubes on amagnet and the
supernatant was kept. We performed immunoprecipitation with a
cross-species reactive H3K27ac antibody (Active Motif 39133). The
samples were incubated with the antibody overnight at 4 °C. We then
washed, eluted and treated the samples and treated with Proteinase K.
Wepurified the samples using ZymoDNAClean&Concentrator. Biotin
capture was performed with Dynabeads M-280 Streptavidin (Ther-
moFisher 11205D), followed by library preparation. We purified the
amplified libraries with Illumina Sample Purification Beads. We
sequenced the libraries using paired-end reads with either Illumina
NovaSeq 6000 S2 Reagent Kit v1.5 (200 cycles, 20028315) or NextSeq
500 High Output v2 kit (150 cycles, 20024907) to generate 100–200
million read pairs per sample.

We mapped HiChIP paired end reads to hg19 using HiC-Pro121.
Default settings were using to remove duplicate reads, identify valid
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interactions, and generate contact maps. We identified statistically
significant contacts using FitHiChIP122 at a 1% FDR. We used H3K27ac
ChIP-seq data as a reference set of peaks in the FitHiChIP pipeline.

CCAT1 DNA (CRISPRi) and RNA (Cas13) perturbations
For RNA targeting, a doxycycline-inducible RfxCas13d HT29 cell line
was generated as described in MYC knockdown using Cas13. We then
designed a series of optimized Cas13 gRNAs that target the second
exon of the CCAT1 transcript using cas13design (https://cas13design.
nygenome.org/). Guide sequences were cloned into pLentiRNA-
Guide_001 (Addgene 138150)70. All constructs were confirmed by
Sanger sequencing.

We lentivirally transduced guide constructs into the TetO-
RfxCas13d-NLS HT29 cells with 3 biological infection replicates. After
24 h, we replaced the media with puromycin media (Supplementary
Data 6). We titered viral volumes such that 20-40% of cells survived
after puromycin selection. Then, after completed puromycin selection
(72 h), we added 1 μg/ml doxycycline (Sigma D9891) to induce
RfxCas13d expression. After 24 h (with doxycycline), we extracted
DNA/RNA qPCR.

For DNA targeting, we chose 3 guide RNA sequences located at
themaximaofHT29-1 (SupplementaryData 3) identified in theCRISPRi
screen, which is located in the promoter of CCAT1. These gRNAs are
the same ones used in the individual guide CRE targeting experiments
(Supplementary Data 7). We cloned guide sequences into pCC_09 and
lentivirally transduced the constructs (in parallel with the above Cas13
experiment) into HT29 cells in 3 biological infection replicates. After
24 h, we replaced the media with puromycin media (Supplementary
Data 6). We titered viral volumes such that 20–40% of cells survived
after puromycin selection. After selection and expansion for 3 days in
puromycin, we plated cells for DNA/RNA extraction for qPCR.

H3K27ac HiChIP after CCAT1 knockdown
TetO-RfxCas13d-NLS HT29 cells were transduced with either a non-
targeting gRNA or one of two CCAT1 targeting gRNAs (Supplementary
Data 7) cloned into pLentiRNAGuide_001 (Addgene 138150). The cells
were selected in 1.5μg/ml puromycin for 2 weeks to ensure complete
selection. Then, we added 1 μg/mL doxycycline to induce RfxCas13d
expression and performed H3K27ac HiChIP 72 h after induction as
described in H3K27ac HiChIP sample preparation and analysis. We
mapped HiChIP paired end reads to hg19 using HiC-Pro121. Default
settings were using to remove duplicate reads, identify valid interac-
tions, and generate contact maps.

We then randomly downsampled valid interactions for the non-
targeting gRNA and Cas13 CCAT1 knockdown gRNA 2 to match the
number of valid interactions from the Cas13CCAT1 knockdown gRNA 1
(~16million valid interactions).We used FitHiChIP122 to determine loop
significance. We merged loops from CCAT1 knockdown guide RNA 1
and guide RNA 2 (Supplementary Data 7) and took the average of the
contact count and significance to create a combined CCAT1 knock-
down profile. We then identified statistically significant loops in each
condition (nontargeting or CCAT1 knockdown) using the same
threshold as in the prior HiChIP (1% FDR), keeping all loops that were
significant in either condition. Loop strengths were normalized so that
nontargeting and CCAT1 knockdown conditions had the same mean
across all loops. Bootstrap error in contact count was calculated by re-
sampling 90% of loops (without replacement) and computing the
standard deviation from 1000 bootstrap resamples. Significance was
calculated from the z-score of the distribution of loop strength dif-
ferences (CCAT1 knockdown—nontargeting control) assuming a nor-
maldistribution. For the volcanoplot visualization, the log-fold change
was computed comparing the CCAT1 knockdown loop strength to the
nontargeting control loop strength with a pseudocount added to both
quantities before the fold-change calculation. We chose a pseudo-
count equivalent to the minimum number of contacts (8).

CCAT1 rescue after CRISPRi knockdown
ForCCAT1 rescue experiments,HT29 cellswere transducedwithKRAB-
dCas9 vector (Addgene 170067) and selected with 5 µg/ml of blas-
ticidin for 5 days; we termed these cells HT29-CRISPRi. To make a
constitutively expressed CCAT1 rescue vector that co-expresses
mKate2, we first amplified CCAT1 exon 1 and exon 2 from HT29
genomic DNA (see Supplementary Data 7 for PCR primers). Using
Gibson cloning, we inserted the CCAT1 exons into a backbone con-
taining a CMV promoter and bGH poly(A) signal (pCMV-PEmax,
Addgene 174820) that was digested with NotI and PmeI restriction
enzymes (Thermo). Next, we used this intermediate vector as a tem-
plate for PCR cloning into a lentiviral vector: The CMV-CCAT1 cassette
was amplified (see SupplementaryData 7 for PCRprimers) and inserted
via Gibson cloning in reverse orientation into pLentiEGFPdestablized45

(Addgene 138152) digested with EcoRI and KpnI restriction enzymes
(Thermo). We digested this vector with ClaI and BamHI restriction
enzymes and cloned mKate2 into the vector using Gibson assembly.
The mKate2123 cassette was synthesized as a human codon-optimized
gBlock (IDT). We termed this CCAT1 rescue plasmid pLentiCCAT1-Red
(Addgene 226521).

To produce lentivirus, we seeded 9 million HEK293FT cells into a
T75flask and transfected themwith 45.6 µl polyethylenimine linearMW
25000 (Polysciences), 8.3 µg pLentiCCAT1-Red, 6.64 µg psPAX2 and
4.56 µg pMD2.G. Three days post-transfection, the viral supernatant
was collected, filtered through a 0.45-µm filter. We then transduced
HT29-KRAB-dCas9 cells with pLentiCCAT1-Red (MOI <0.1). After
5 days, we sorted transduced cells (mKate2-positive cells) using a Sony
SH800 cell sorter. We termed these cells HT29-CRISPRi-CCAT1rescue.

To generate CRISPRi guide plasmids with mStayGold (a green
fluorescent protein), we first cloned theU6-sgRNA(F + E) cassette from
pCC_01 (Addgene 139086) into pLentiRNAGuide_00393 (Addgene
192505) using PacI and NheI restriction sites and termed the plasmid
pLentiSpCas9guide (GFP-P2A-Puro). We then synthesized a human
codon-optimized mStayGold124 as a gBlock (IDT) and cloned it into
pLentiSpCas9guide using AgeI and BamHI restriction sites and T4
ligase (New England Biolabs); we termed this plasmid lentiGuideFE-
mSG-Puro (Addgene, 226522). We then cloned guide RNAs (CRISPRi
nontargeting guide and Peak validation sgRNACRISPRi HT29/PC9CRE
#1, see SupplementaryData 7) into this plasmid usingBsmBI restriction
sites. Lentivirus was produced as in MYC knockdown using Cas13.

HT29-CRISPRi and HT29-CRISPRi-CCAT1rescue were each trans-
duced with the guide RNA constructs in lentiGuideFE-mSG-Puro
(MOI ~ 0.5). After 2 days, all cells where plated onto a 96-well plate at
4000 cells per well. Plates were imaged using an Incucyte SX3 at 10×
magnification with 4 images acquired per well every 4 h. For each
condition, the relative growth rate was calculated as the mStayGold
(green) area divided by the total cell confluence area and then nor-
malized to the cells transduced with nontargeting gRNAs.

Enhancer RNA analyses
We downloaded NET-CAGE data from Hirabayashi, et al.86. We com-
pared NET-CAGE signal within the identified CREs by summing the
total NET-CAGE reads. We ranked 20 kb (HiChIP) bins and DHS peaks
within the screen region by the sum of NET-CAGE reads.

Transcription factor motif prediction
We downloaded predicted transcription factor motif binding sites
from JASPAR (Supplementary Data 1). After choosing sites with a score
(weight) greater than 400, we separated each transcription factor’s
binding sites into a separate bed file. Then, we used genomic asso-
ciation tester (GAT) 1.3.4 to associate significant gRNAs in each cell line
(as defined in CRISPRi pooled screens library preparation and data
analysis) with the transcription factor motifs in each transcription
factor’s file. We defined the workspace for GAT as the entirety of the
MYC TAD / screen area. GAT was run 5x with 2000 iterations per run,
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for a totalof 10,000 iterations per association test, for a totalof 10,000
iterations per association test. GO term enrichment was performed
with Metascape v3.5 against a background of all Homo sapiens tran-
scription factors in JASPAR.

TF ChIP-seq and TCGA analysis
We downloaded TF ChIP-seq data from ENCODE (Supplementary
Data 1) as processed bigWigs. We accessed TCGA pan-cancer RNA-seq
data via the cBioPortal dashboard. We generated MYC-TF correlation
plots in RStudio, which also gave us correlation values and p values.
TFs chosen are among the top 50 TFs ranked by fold enrichment from
GAT (See Transcription factor motif prediction) and represent TF
families highlighted by GAT in each cell line.

Statistical analysis
Data between two groups were compared using a two-tailed unpaired
Student’s t test. Unless otherwise indicated, a P-value less thanor equal
to 0.05 was considered statistically significant for all analyses, and not
corrected for multiple comparisons. In cases where multiple compar-
ison corrections were necessary, we adjusted the P value using the
Benjamini-Hochberg method. All group results are represented as
mean± s.e.m, if not stated otherwise. Statistical analyses were per-
formed in Prism (GraphPad) and RStudio (RStudio PBC).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
H3K27ac HiChIP data generated in this study is available have been
deposited in NCBI’s Gene Expression Omnibus repository under GEO
Series accession number GSE278245. Source data are provided with
this paper.
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